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The Johnson, Kendall and Roberts (JKR) technique has been used with considerable 
success for assessing solid/solid interfacial interactions over the past 25 years or so. 
Nevertheless. the contact zone between the two spherical solids is often small and the 
energy of adhesion scales with the cube of the contact radius (at low load), thus 
potentially magnifying errors in adhesion assessment. The theoretical aspects of a novel 
technique are presented here, in which a hollow, slightly inflated, spherical membrane 
replaces a full sphere, and is placed in contact with a Rat rigid solid. A judicious choice 
of experimental conditions should lead to increased contact radius and the energy of 
adhesion scales with its square (at low load), thus reducing possible errors. An added 
advantage i s  that the etfective elasticity of the sphere depends on internal gas pressure. 
Thus surface and bulk effects are decoupled. 

K e y w i r t b :  Adhesion hysteresis; “balloon” test; contact mechanics; elastomer; JKR test; 
membrane; spherical surface: van der Waals adhesion 

INTRODUCTION 

Adhesion and wetting are two closely related subjects in that the 
physical contact between the two phases, respectively solid/solid and 
solid/liquid, is largely governed by intermolecular forces of a physical 
nature. Although strong solid/solid adhesion may, in some cases, re- 
sult from chemical, or covalent, bonds across the interface, the initial 
contact, as with wetting, depends essentially on longer range, essen- 

*One of a Collection of papers honoring Robert J. Good, the recipient in February 1996 of 
The Adhesion Sociery Awurd for Excellence in Adhesiori Science. sponsored by 3 M .  
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16 M. E. R. SHANAHAN 

tially physical attractions. The potential surface activity of a liquid 
may be readily assessed by direct measurement of its surface tension, 
equivalent for a pure liquid to its surface free energy, using tensiomet- 
ric methods. However, in the case of a solid, the situation is far more 
complicated due to its lack of molecular mobility. For this reason, it 
has been common practice now for many years to estimate the surface 
free energy of a solid using the indirect method of wetting in which, 
for example, a sessile drop is placed onto the solid surface and its 
contact angle, 0, measured and used in Young’s equation: 

where ys and y I ,  are the surface free energies (tensions) of solid and 
liquid and y s L  is their common interfacial free energy (tension). (Equa- 
tion (1) is, of course, a slight simplification neglecting complications 
due to surrounding vapour and adsorption phenomena.) The terms y L  
and I) are readily available but, in order to ascertain ys, a functional 
form for ysL must be assumed. This has constituted a major problem 
over the years and although no definitive, general solution has yet 
been established, one of the major contributors to the advancement of 
knowledgde in this field has been Robert J. Good, along with his 
various coworkers. In the 1950s, with Girifalco, Good proposed a 
relation for ysL involving the geometric mean of ys and y L  and a 
function of molar volume [l, 21, later extended by Fowkes [3], which 
had considerable success. Later, Good, together with Chaudhury and 
van Oss, were amongst the first to consider the importance of 
acid/base interactions at an interface [4]. 

Surface free energies are fundamental to adhesion as well as wetting 
and, in certain cases, van der Waals forces alone may lead to signifi- 
cant interfacial strength. However, the adhesion of a polymer, in par- 
ticular an elastomer, to a second solid, rigid or not, represents a 
complex phenomenon involving not only the surface properties of the 
substrates in contact but also certain aspects of their bulk mechanical 
behaviour. During separation of an interface, viscoelastic dissipation 
in the vicinity of the failure front effectively “amplifies” the intrinsic 
DuprC energy of adhesion and the increase may be considerable, a 
factor of several thousand being possible [S-81. Since the extra energy 
dissipated obeys time-temperature superposition principles [9], it is to 
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SOLID,’SOLID INTERFACIAL INTERACTIONS 17 

be expected that quasi-static tests will lead to values of adhesion close 
to those predicted by the Duprt relation: 

where 7’ represents the surface (interfacial) free energies of the solids 1 
and 2. Thus, in principle, one may approach the surface free energies 
of solids uiu adhesion directly. However, this is not always the case 
and it would seem that the effective energy of adhesion decreases with 
increasing degree of crosslinking [ 101 when measuring separation, 
rather than formation, of an interface. A common test of separation is 
that of peel, but when quasi-static data are required, a more suitable 
set-up, as used in Ref. 10, is that depending on the Johnson, Kendall 
and Roberts (JKR) principle [I1 13. When two spherical, elastic surfaces 
are pushed into contact, the overall free energy pertaining to elastic 
stored energy, mechanical potential energy and adhesion energy, is 
minimised at equilibrium. In the case of an elastomeric sphere of 
radius, R ,  and Young’s modulus, E ,  in contact with a flat, rigid solid, 
the energy of adhesion, W,, is given by: 

where a is contact radius and F is applied force. One significant 
advantage of this method is that viscoelastic “amplification” of the 
fundamental energy of adhesion is largely avoided. However as 
F - t  0, MI scales with u3,  thus potentially introducing significant er- 
rors when u is small (when a is too large, the theory is no longer 
applicable, anyway). Although the now classical JKR theory is in- 
dubitably of great value and has been often successfully used [lo- 151, 
the W -  a3 law is a drawback. The purpose of this article is to propose 
a modification, or variant, on the JKR test in which an elastomeric, 
full sphere is replaced by a spherical membrane under slight internal 
pressure. Despite certain potential practical difficulties, the simple 
analysis presented demonstrates the advantage of a scaling law of the 
type W -  u2. In addition, the effective elasticity of the system and the 
adhesion properties are decoupled, leading to a potentially more ver- 
satile test. 
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18 M. E. R. SHANAHAN 

BASIC EQUATIONS OF THE SPHERICAL MEMBRANE 
OF “BALLOON” 

The JKR theory amounts to a modification of the Hertz theory [lG] 
of contact mechanics in which the adhesion term, neglected by Hertz, 
has been incorporated. At high applied loads, the Hertz relation is 
essentially correct. It is only at low loads that the deviations due to 
surface terms appear. 

Assuming the specific geometry of a deformable, elastomeric, spheri- 
cal surface in contact with a flat, rigid solid (radius of curvature 
of the latter + m), it is intuitively obvious that when pressing a hollow 
sphere against the flat, a larger contact area will result than when 
pushing a full sphere of the same material and radius and with the 
same force. This is the basis of of the following theory. 

Consider Figure 1, which shows schematically a spherical, elasto- 
meric membrane (i) before and (ii) after contact with a flat, rigid solid. 
Despite certain experimental difficulties manifestly. related both to the 
production and the set-up of this system, we shall postulate that the 
initial hollow, spherical membrane has an intrinsic radius of p (internal 
for definiteness, but the thickness is considered much less than p),  but 

F 

t 

( ii) 

FIGURE 1 
contact and (ii) at equilibrium. 

Schematic diagram of spherical membrane and flat, rigid solid, (i) before 
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SOLID/SOLID INTERFACIAL INTERACTIONS 19 

that the membrane is partially inflated and a slight overpressure of gas is 
contained leading to a radius of R and membrane thickness t. We thus 
effectively have a spherical “balloon”. Taking the overpressure within the 
balloon to be AP, = Pi - Po where Pi is the internal pressure and Po the 
external (atmospheric) pressure, and the (biaxial) tension within the mem- 
brane as 1;, from simple equilibrium considerations we have: 

R.AP,  q=2 (4) 

The quantity of gas contained is fixed and, assuming the ideal gas law 
to apply in the following, we have: 

4 
3 P, = - 7 1 ~ ~  P,  = niiT‘= K(constant) (5 )  

where 6 is the initial, or spherical, internal volume, n is the number of 
moles of gas contained and a and Tare, respectively, the ideal gas 
constant and absolute temperature. 

In Figure l(ii) we consider that a flat, rigid solid has been pushed 
against the balloon with small force, F ,  leading to a circular contact 
area of radius G, subtending an angle 6 at the centre of the sphere 
(a << R and 8<< 1). 

Due to the compression of the internal gas and the elasticity of the 
membrane, the balloon will adopt the form of a sphere, now of radius 
R + 6R, with a small flattened area. We must determine 6R. Strains in 
the membrane are considered small and, thus, treated using linear 
elasticity theory. 

The initial strain of the membrane before contact, ci, is given by: 

R - p  q(1-V) - R ( l - v ) . A P i  
8, = - = ___ - 

P Et  2Et  

where v is Poisson’s ratio, leading to: 

2EtR 
= 2Et + R(1- v )  AP, (7) 
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20 M. E. R. SHANAHAN 

Similarly, the strain after contact, will be given by: 

(8) 
R + 6R - ,O T’ (1 - V) Ef = - - 

(R + 6R) (1 - V) APf  - - - 
P Et 2Et 

where q. refers to membrane tension after contact and A P f  = P ,  - 
P, ,Pf  represents the final internal pressure. Elimination of p from 
Equation (8) using Equation (7) leads to: 

R2(1 - v) ( P f  - Pi) 
6R=- 

2Et - R (1 - V) ( P f  - Pi )  (9) 

The final internal volume after contact, VJ., is given by: 

4 
3 

V , % - ~ T ( J ! + ~ R ) ~  

Since, by analogy with Equation (3, we have P f V f  = K ,  we may write: 

Substitution of Equation (1 1) into Equation (9) leads, to order 6R and 
04, to: 

3R2Pi(l - v)04 
6R % = 3.R04 

16[2Et + 3RPi( l -  v) ]  

where 3 is a constant for a given balloon (at given temperature and 
pressure). 

EQUILIBRIUM OF THE BALLOON/FLAT SOLID 

We shall consider the free energy of the system, G,  pertaining to four 
sources: (a) the elastic, stored energy of the membrane, G,; (b) the 
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SOLID/SOLID INTERFACIAL INTERACTIONS 21 

energy of adhesion, G,; (c) the mechanical, potential energy associated 
with F, the force of contact of the flat solid, G,; and (d) the energy 
corresponding to the gas compressed within the membrane, G,. 

(a) The elastic stored energy is T;. (1 - v ) / ( E t )  per unit area of 
surface, where v is Poisson’s ratio ( z l/2 for an elastomer) and E is 
Young’s modulus. Since the volume of the membrane itself (47cR’t) 
remains essentially constant, we have: 

(13) 
T:(l - v).47tR2 N ~ ( l  - v ) ( A P ~ ) ~ R ~ ( R  + 26R) - 

Et 
G,  x 

Et 

where APf and 6R may be given explicitly using Equations (1 1) and 
(12) above. The second equality of expression (13) follows by analogy 
with equation (4) for the case of 7’’. It should be noted here that an 
underlying assumption is made in that the state of tension in the 
membrane is supposed to be the same in the contact zone as in the 
free zone. In practice, this may depend on the manner in which con- 
tact has been effected. 

(b) The free energy of the interfacial zone is y,’ during contact, 
compared with y ,  + y z  before contact. Using Equation (2), we see that: 

G,= - na’ W, (14) 

where u is contact radius. 

of application, F ,  is given by: 
(c) The mechanical energy corresponding to movement of the force 

G, x - F [ R  - ( R  + GR)cosO] (15) 

(d) The volume of the interior of the balloon in its final configu- 
ration is given by Equation (10). Since the gas inside is assumed to be 
ideal, the increase in free energy due to compression, G,, is related to 
the internal pressure and the volume by: 

G , = -  A P d V = -  - - -Po  d V z 3 A P i &  --- (16) 1 ) (;: hRR) 
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22 M. E. R. SHANAHAN 

In order to determine equilibrium, we must minimise the sum: 

k n(l - Et R4' bi + Q4 [3 Pi  (f - 2A) + 21. APi]} - nR ' W, (8' -- $) 
+3K.APi - - A H 4  ) (:a ) 

where G corresponds to the overall free energy of the system (to 
within an additive constant). 

At equilibrium, dG/dB = 0, and after some algebra and using the 
sirnplification a cz RB, we obtain: 

w , ~ & { 3 q A P ~ [ ~ ( ~ P ~ ( l -  R(l - v )  3 161)+2iAPi 

-FR  --4h -- (; ")I 2 L  

As will be seen in the following, the balloon test should be of most 
use when APi is small. Thus, on neglecting terms of order (APi)2, we 
have: 

3RPi(l - V )  

Clearly Equation (19) (or (18)) will only be valid when APi is positive 
anld when F is sufficiently small (this latter condition applies equally 
to (Equation (13)) but an advantage is that as F - t O ,  we obtain: 
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SOLID,/SOLID INTERFACIAL INTERACTIONS 23 

This dependence on a’ rather than u3 should be of use in reducing 
potential errors. The difference in scaling law can perhaps be appreci- 
ated conceptually by considering that, in the JKR system, adhesion is 
“battling” against a volume of solid ( - a3) whereas, with the balloon, 
the resistance trying to separate membrane and rigid solid is essential- 
ly a surface phenomenon. 

APPLICATION TO A MODEL CASE: COMPARISON WITH JKR 

The equilibrium corresponding to Equations (19) (or (1 8)) depends 
on the minimisation of the free energy function, G, of Equation (17). 
It is instructive to consider the various components of G as a func- 
tion of the angle 0 or, alternatively, the contact radius, a. We shall 
consider this for a model case using plausible values for the various 
parameters of the system balloon/rigid solid. Typically we may take 
W, to be of the order of 50 mJ.m-? and Young’s modulus for a soft 
rubber, E ,  to be about lo6 Pa with v z 1/2. Let us consider a mem- 
brane radius, R ,  of 2 x m. We shall 
assume that the system is at atmospheric pressure ( P o  = 10’ Pa) 
and that AP, = lo2 Pa-a slight overpressure. This leads to a value 
of E. = 0.059. We shall assume an applied load. F ,  of lo-? N. The 
various contributions to G may be calculated from Equations (1  1) 
to (16). These are given in Figure 2, together with G itself, as a 
function of contact radius, a. It can be seen that a minimum in G 
is obtained at a 2 7 mm. Using the same data (where applicable) 
in Equation (3), we find an equivalent JKR contact radius of a % 

0.7 mm. It can, thus, be seen how the balloon presents a distinct 
advantage with its greater contact zone. (Although an order of mag- 
nitude difference is manifest in this case, in practice it may be better 
to choose parametric values so that a / R  is somewhat smaller). 

Nevertheless, it should be noted that for the balloon test to prove 
advantageous, the overpressure APj must be relatively small. If we 
adopt a figure of AP, = lo4 Pa, a value of a of 0.6 mm results, which is 
slightly smaller than that found with the JKR system! 

With the JKR system it is possible to make F negative and still 
have adhesion, i.e. the applied force tends to separate sphere and 

m and thickness, t ,  of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



24 

6 

4 

G 
(J.16) 

0 

- 2  

-4 

M. E. R. SHANAHAN 

FIGURE 2 Curves of, G, the overall free energy (to within an additive constant) and 
its various components: G,, G ,  G, and G,, as a function of contact radius, a. Equilib- 
rium corresponds to (I z 7 mm (see text for values of parameters used). 

rigid solid, yet, provided F in tension is not too great, contact is 
maintained. The limiting value of negative F (pull-off force) is well 
established and given by [l 11: 
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SOLID/SOLID INTERFACIAL INTERACTIONS 25 

An equivalent limiting negative force at separation occurs for the 
balloon/rigid solid and is given by: 

In both cases, the (negative) force at separation is independent of the 
elastic characteristics of the sphere and, in the case of the balloon, also 
of the overpressure of gas. [In effect, A Pi may be considered to repre- 
sent “part” of the elastic modulus of the balloon]. Comparison of 
Equation (21) and (22) shows that the separation force is 33% greater 
in the case of the balloon test. 

It is of interest to consider the equilibrium contact radius, a, as a 
function of force, F, for the JKR and balloon/rigid solid systems. This 
is done in Figure 3, where u is on a logarithmic scale. With the 
exception of (variable) F,  the same values of the parameters have been 
used as for Figure 2. It can be seen that, typically, the balloon/rigid 
solid test gives contact radii ca. 10 times larger than for the JKR 
system, although values of a corresponding to F greater than ca. 

FIGURE 3 Curves of contact radius, a, as a function of applied force, F,  for both (a) 
the JKR and (b) the balloon/rigid solid systems. The dotted line above F = cu. 0.01 N 
for (b) indicates that limitations of the theory are being approached, and that for (a) is 
the (negative) pull-off force. 
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26 M. E. R. SHANAHAN 

1.5 x N are represented by a dotted line since the hypothesis of 
actR starts to become doubtful. The pull-off force for JKR is ca. 
- 4.7 x 10- N and that of the balloon/rigid solid system, ca. - 6.3 x 
10-3 N. 

DISCUSSION 

The above theory suggests that the use of a hollow, slightly inflated 
sphere, instead of a full sphere, may be advantageous for contact 
experiments in the investigation of the (feeble) adhesion between a 
relatively soft solid, such as an elastomer, and a more rigid material. 
Although the above theory was aimed specifically at this case, in 
principle, polymer/polymer adhesion may possibly be evaluated using 
two inflated spheres in contact with each other. The proposed test has 
something in common with the well-known blister test [ 17, IS], com- 
monly used for assessing the adhesion of coatings, in that a fluid 
under pressure is resisting adhesion. An important difference, how- 
ever, is that the method presented here considers adhesion on the 
curved surface of the spherical membrane, whereas the blister test 
involves separation at the rim of an essentially spherical protrusion of 
membrane from an otherwise flat coating. 

The potential advantages of the proposed method are manifest. A 
larger contact zone may be expected when a judicious choice of pa- 
rametric values (dimensions, elastic characteristics and gas overpres- 
sure) has been made. This will both render measurement easier and 
reduce potential errors, the second advantage also being aided by the 
energy of adhesion scaling essentially with the square, rather than the 
cube, of the contact radius. In the JKR test, a given elastic sphere has 
intrinsic surface and bulk properties. With the balloon test, these two 
are effectively decoupled. Although the surface properties will be in- 
trinsic for a given membrane material, by changing the initial internal 
overpressure of gas, effectively the elastic, or mechanical, properties of 
the sphere may be modified. This may be effected by manufacturing a 
series of spheres of the same material with various initial, internal 
pressures. Alternatively, by conducting experiments at different tem- 
peratures, the same sphere may be used and the product PiF simply 
changed via Charles’ law. Such cycles of temperature could perhaps be 
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SOLID,’SOLID INTERFACIAL INTERACTIONS 21 

exploited in order to gain a better understanding of adhesion hyster- 
esis [lo, 13,141. 

Nevertheless, the method envisaged could present certain delicate 
experimental problems. It may not be easy to manufacture the requi- 
site spheres and their clamping during measurements could prove 
difficult. One possible technique for at least reducing the experimental 
difficulties of clamping could be to use two identical flat rigid solids 

parallel to each other and apply these to the spherical membrane, 
as shown schematically in Figure 4 (as suggested personally to the 
author by C. Creton). The above theory would have to be slightly 
modified but this is a trivial affair. 

As far as the theory is concerned, we have remained with the same 
basic school of thought as Johnson, Keiidall and Roberts, i.e. adhesion 
forces outside the area of contact are neglected and, thus, stress singular- 
ities may exist at the contact edge. Another type of analysis exists, known 

F 

FIGURE4 Schematic diagram of a possible variant on the simple balloon test, in 
which two identical flat, rigid solids are applied to “sandwich” the sphere. 
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28 M. E. R. SHANAHAN 

as the DMT theory [ 191, which makes rather different assumptions. Ad- 
hesion (long-range forces) outside of the zone of contact are taken into 
consideration. For a full description of the JKR and DMI’ models and 
a theory for the transition between them, the reader is referred to 
Maugis [20]. In the present context, since we are principally dealing with 
soft solids, it is believed that the JKR approach is more suitable. 

An implicit assumption has been made in the development. It has 
been taken the state of tension in the membrane will be the same in 
the contact area as elsewhere on the free membrane. This point is 
delicate and may well depend on the method of contact. The adhesion 
itself may impede any modification of the position of the membrane 
with respect to the flat solid in shear, and this may modify the tension 
locally. This could potentially have some impact on the fracture mode. 
The separation front is assumed to behave in mode 1 but the last 
point, together with the fact that the membrane tension is biaxial, may 
lead to a contribution in mode 2. (This latter point is also true for the 
JKR test, especially when v # 0.5.) These problems are not trivial and, 
for the moment at least, no answers are forthcoming. Nevertheless, use 
of two identical elastomeric spheres, as suggested -above, could allevi- 
ale this problem at least to some extent. 

Finally, despite the potential drawbacks discussed above, it is be- 
lieved that the balloon test may well be of use in investigations of 
fundamental adhesion problems. Clearly, variants on the test are also 
possible. Apart from the possibility of using two, symmetically dis- 
posed, rigid flats, or identical elastomeric spheres, as mentioned 
above, it may be possible to fill the balloon with an incompressible 
fluid, i.e. a liquid, instead of a gas. Equivalently, a variant of the blister 
test may be used where interest is concentrated on the apex of the 
separated blister adhering to an imposed flat solid. 

CONCLUSION 

The classical theory of Johnson, Kendall and Roberts (JKR) [ll] has 
proved enormously useful over the past decades for the investigation 
of adhesion, particularly feeble adhesion due to van der Waals forces. 
Nevertheless, it has drawbacks, notably the dependence of the de- 
duced energy of adhesion on the cube of the contact area between the 
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SOLIDISOLID INTERFACIAL INTERACTIONS 29 

two adhering spherical surfaces. In this article, a variant of the JKR is 
suggested in which a hollow, spherical membrane, slightly inflated, is 
placed in contact with a flat, rigid solid. It is shown that the energy of 
adhesion scales with the square of contact radius, u (at low applied 
load), and, with a suitable choice of parameters, the contact zone can 
be relatively large (compared with the equivalent JKR value), thus 
potentially reducing experimental errors. In addition, by changing the 
overpressure of the gas within the spherical membrane, or balloon, the 
effective elastic modulus is varied. The technique, thus, should permit 
decoupling of surface and bulk effects. 
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